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accretion disk

Accretion-Powered X-Ray Pulsars

spin axis magnetic axis

dipole magnetic field

~ rm • Magnetically-channeled flow onto polar caps, 
hits at ~0.1c.

• Gravitational potential energy released as X-
rays,

• Misaligned magnetic dipole axis: pulsations 
at spin period from X-ray hot spots at poles.

• Accretion adds mass and angular momentum 
to NS (measure torque)
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accretion disk

Accretion Torques on X-Ray Pulsars

spin axis magnetic axis

dipole magnetic field

~ rm

Important length scales:

rm = magnetospheric radius, where

r

vϕ

rco

Keplerian

corotating

B2(rm )
8π

 ~  ρ v2(rm )

rco = corotation radius, where Ωkep(rco) = Ωrot

Characteristic torque: N0 = Ý M GMrco
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Equilibrium spin period (rm ≈ rco):



Life History of Pulsars: Spin and Magnetic Evolution

1. Pulsars born with B~1012 G, 
P~20 ms. Spin-down due to 
radiative loss of rotational K.E.

2. If in binary, then companion 
may eventually fill Roche lobe. 
Accretion spins up pulsar to 
equilibrium spin period

3. Sustained accretion (~109 yr) 
attenuates pulsar magnetic field 
to B~108 G, leading to 
equilibrium spin P~few ms
(Not directly observed yet!)

4. At end of accretion phase 
(companion exhausted or
binary disrupted), millisecond 
radio pulsar remains

This implies a step “3.5”: millisecond X-ray pulsar while accretion still active.
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Distribution of Burst Oscillation Frequencies
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• We find that νhigh < 730 Hz (95% confidence)   (exact value depends upon choice of prior)

• Recycled pulsars evidently have a maximum spin frequency that is well below the breakup
frequency for most NS equations of state.  Fastest known msec radio pulsar is  PSR J1748-2446ad
(Ter 5) at 716 Hz (Hessels et al. 2006). (Next fastest are 641, 620, 596, 578 Hz) Single population? 

• Detailed shape of distribution still unclear.  (Sharp cutoff? Pileup? Falloff?). More systems!

• Submillisecond pulsars evidently relatively rare, if they exist. 



How to explain cutoff in spin distribution?
1. Equilibrium spin not yet reached?

• Unlikely, since spin-up time scale is short compared to X-ray lifetime
(but EXO 0748-676 ?)

2. Low breakup frequency for NSs?
• Requires stiff, exotic EOS with M<1.5 M and R~16 km

3. Magnetic spin equilibrium? (e.g. Ghosh & Lamb 1979; Lamb & Yu 2005)
• Depends on accretion rate and B.  Take observed accretion rate range and apply 

disk-magnetosphere interaction relevant for weakly magnetic NSs (see Psaltis & 
Chakrabarty 1999). 

• Can reproduce spin distribution if ALL the objects have similar magnetic field 
B ~108 G.  However, this is inconsistent with our inference of a higher field in 
SAX J1808.4-3658 than in the other burst sources.  (Pulsations in other 
sources?)

4. Accretion torque balanced by gravitational radiation?
• Gravitational wave torque ∝Ω5, from any of several models:

r-mode instability (Wagoner 1984; Andersson et al. 1999)
Accretion-induced crustal quadrupole (Bildsten 1998; Ushomirsky et al. 2000)
Large (internal) toroidal magnetic fields (Cutler 2002)
Magnetically confined “mountains” (Melatos & Payne 2005)

• Strain of                for brightest LMXBs (Bildsten 2002): Advanced LIGO?
• Use long integrations to search for persistent GW emission from pulsars

(Wagoner 1984;
Bildsten 1998)

h ~10−26



Sensitivity of Current and Future Gravitational Wave Observatories

Adapted from D. Ian Jones (2002, Class. Quant. Grav., 19, 1255)
University of Southampton, UK
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NASA Rossi X-Ray Timing Explorer (RXTE)

• Named for Prof. Bruno 
Rossi (1905-1993) of 
MIT

• Launched Dec. 1995, 
will operate until at least 
Feb 2009

• 6000 cm2 proportional 
counter array (PCA), 2-
60 keV,  µs time 
resolution

• HEXTE (high-energy 
instrument), 20-200 keV

• Small area all-sky 
monitor (ASM) for 
activity alerts

• Rapid repointing 
possible (X-ray 
transients)



Example of X-ray timing with RXTE:
Power spectrum of X-ray count rate from SAX J1808.4-3658

Poisson
level

Millisecond
variability

Red noise



Millisecond Variability in Low-Mass X-Ray Binaries

1. Kilohertz quasi-periodic oscillations (kHz QPOs)

2. X-ray burst oscillations
3. “Bona fide” accretion-powered millisecond X-ray pulsars

Three distinct types of rapid variability identified by the Rossi X-Ray Timing Explorer:

1 2

3



“Bona Fide” Accretion-Powered Millisecond X-Ray Pulsars
RXTE Power spectrum of SAX J1808.4-3658 (April 1998)

Wijnands & van der Klis 1998

Chakrabarty & Morgan 1998

• Discovered with Rossi X-Ray Timing Explorer (RXTE) in 1998, 17 years after first msec radio pulsar. 
• Persistent, coherent millisecond pulsations in non-burst emission.  Doppler-modulated by binary motion.
• Long-term coherence of pulsations conclusively establishes link to rotation of neutron star.
• Confirms prediction that low-mass X-ray binaries contain rapidly rotating NSs with msec spins.
• 7 sources known, all are X-ray transients (~weeks duration) in highly compact binaries.
• Pulsed amplitude ~5%, well above non-detection limits in other LMXBs.  Why not detected in (most) 
other systems?

Two-hour orbit of SAX J1808.4-3658

401 Hz



Accretion-Powered Millisecond Pulsars
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•About half of the pulsars are in ultracompact binaries with nearly identical
binary periods.

• All of these are low-luminosity transients with low mass-accretion rates. 
Why no persistent sources?
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• Thermonuclear X-ray burst phenomenon known since 1970s.

• Burst oscillations discovered with RXTE (Strohmayer et al. 1996).

• Nearly coherent millisecond oscillations during thermonuclear 
X-ray bursts (270-619 Hz).  More than 100 examples in over 10 
sources, most also with kHz QPOs.

• Frequency drifts by several Hz over a few seconds, with 
asymptotic maximum at spin frequency. Frequency drift 
interpreted as angular momentum conservation in a decoupled 
burning layer on neutron star surface. (Strohmayer; Cumming & Bildsten)

• Amplitude evolution in burst rise interpreted as
spreading hot spot on rotating NS surface.
(Strohmayer et al.)

• Oscillations in burst tail not yet understood.

• “Superburst” oscillations in 4U 1636-53
(Strohmayer & Markwardt)

Nuclear-Powered Millisecond X-Ray Pulsars (X-Ray Burst Oscillations)

thermonuclear
burst

quiescent emission due to accretion

contours of oscillation power as
function of time and frequency

X-ray burst
count rate

SAX J1808.4-3658 (Chakrabarty et al. 2003)

4U 1702-43 (Strohmayer & Markwardt 1999)



530 HzA1744-361

45 HzEXO 0748-676

410 HzSAX J1748.9-2021

314 HzXTE J1814-338 (*)
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401 HzSAX J1808.4-3658 (*)
363 Hz4U 1728-34
330 Hz4U 1702-429

270 Hz4U 1916-05

Nuclear-Powered Millisecond Pulsars

(*) = also an accretion-powered pulsar

• 15 sources known. These systems include both 
persistent and transient LMXBs spanning a range of 
orbital periods and luminosities, showing that rapid 
spins are a common feature of NS/LMXBs.

• 2 of these are also accretion-powered pulsars, 
conclusively establishing that burst oscillations trace 
the NS spin. (Chakrabarty et al. 2003; Strohmayer et al. 2003).

drifting oscillation burst tail oscillation

spin frequency

SAX J1808.4-3658 (Chakrabarty et al. 2003)



Kilohertz quasi-periodic oscillations (kHz QPOs)
• QPO pairs with roughly constant frequency separation (~300 Hz)
• QPO frequencies drift by hundreds of Hz as X-ray flux changes (200-1200 Hz)

• Particular separation frequency (∆ν) is a characteristic of a given source

• Separation frequency ≈ νspin or ≈ (νspin/2) for cases where spin known (Fast vs Slow)
• Seen in over 20 LMXBs.  Believed to originate in accretion disk. Mechanism?

4U 1608-52 
(Mendez et al. 1998)

Sco X-1 
(van der Klis et al. 1997)
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What do we know about the spin frequency evolution?

For a pure accretion torque (no other torque contribution) near spin equilibrium,

Ý ν = 4 ×10−12  
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This time scale is many months long for millisecond X-ray pulsars like SAX J1808.4-3658. 
Note that in the X-ray transients, there is only a significant torque during the (short) outbursts.  
The long-term average mass accretion rate is generally well below the Eddington rate in these 
systems. 

What is known about orbital evolution?

In SAX J1808.4-3658, an orbital period derivative is measured: 

Ý P orb = 3.3 ×10−12

Ý P orb
Porb

=1.62 ×10−8  yr-1



Summary
• Issues of importance for gravitational wave community:

The most luminous LMXBs do not have precisely known spins or orbits
Continuous X-ray timing of most LMXBs not possible
Long-term programmatic prospects for X-ray timing are uncertain
Spin evolution of millisecond X-ray pulsars appears to be modest
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