

# Pulsars in Low-Mass X-Ray Binaries

Deepto Chakrabarty Massachusetts Institute of Technology





- Magnetically-channeled flow onto polar caps, hits at  $\sim 0.1$  c.
- Gravitational potential energy released as X-rays, (CM)

$$L = \dot{M} \left( \frac{GM}{R} \right)$$

- Misaligned magnetic dipole axis: pulsations at spin period from X-ray hot spots at poles.
- Accretion adds mass and angular momentum to NS (measure torque)



### Life History of Pulsars: Spin and Magnetic Evolution



This implies a step "3.5": millisecond X-ray pulsar while accretion still active.

## **Distribution of Burst Oscillation Frequencies**



• We find that  $v_{high} < 730$  Hz (95% confidence) (exact value depends upon choice of prior)

• Recycled pulsars evidently have a maximum spin frequency that is well below the breakup frequency for most NS equations of state. Fastest known msec radio pulsar is PSR J1748-2446ad (Ter 5) at 716 Hz (Hessels et al. 2006). (Next fastest are 641, 620, 596, 578 Hz) Single population?

- Detailed shape of distribution still unclear. (Sharp cutoff? Pileup? Falloff?). More systems!
- Submillisecond pulsars evidently relatively rare, if they exist.

# How to explain cutoff in spin distribution?

- 1. <u>Equilibrium spin not yet reached?</u>
  - Unlikely, since spin-up time scale is short compared to X-ray lifetime (but EXO 0748-676 ?)
- 2. Low breakup frequency for NSs?
  - Requires stiff, exotic EOS with  $M < 1.5 M_{\odot}$  and  $R \sim 16$  km
- 3. <u>Magnetic spin equilibrium?</u> (e.g. Ghosh & Lamb 1979; Lamb & Yu 2005)
  - Depends on accretion rate and *B*. Take observed accretion rate range and apply disk-magnetosphere interaction relevant for weakly magnetic NSs (see Psaltis & Chakrabarty 1999).
  - Can reproduce spin distribution if ALL the objects have similar magnetic field  $B \sim 10^8$  G. However, this is inconsistent with our inference of a higher field in SAX J1808.4-3658 than in the other burst sources. (Pulsations in other sources?)

#### 4. <u>Accretion torque balanced by gravitational radiation?</u> (Wagoner 1984; Bildsten 1998)

- Gravitational wave torque  $\propto \Omega^5$ , from any of several models:
  - r-mode instability (Wagoner 1984; Andersson et al. 1999)
  - Accretion-induced crustal quadrupole (Bildsten 1998; Ushomirsky et al. 2000)
  - Large (internal) toroidal magnetic fields (Cutler 2002)
  - Magnetically confined "mountains" (Melatos & Payne 2005)
- Strain of  $h \sim 10^{26}$  for brightest LMXBs (Bildsten 2002): Advanced LIGO?
- Use long integrations to search for persistent GW emission from pulsars



Sensitivity of Current and Future Gravitational Wave Observatories

Adapted from D. Ian Jones (2002, *Class. Quant. Grav.*, **19**, 1255) University of Southampton, UK

## NASA Rossi X-Ray Timing Explorer (RXTE)



- Named for Prof. Bruno Rossi (1905-1993) of MIT
- Launched Dec. 1995, will operate until at least Feb 2009
- 6000 cm<sup>2</sup> proportional counter array (PCA), 2-60 keV, μs time resolution
- HEXTE (high-energy instrument), 20-200 keV
- Small area all-sky monitor (ASM) for activity alerts
- Rapid repointing possible (X-ray transients)

### **Example of X-ray timing with RXTE:** Power spectrum of X-ray count rate from SAX J1808.4-3658



## **Millisecond Variability in Low-Mass X-Ray Binaries**

Three distinct types of rapid variability identified by the Rossi X-Ray Timing Explorer:

- 1. Kilohertz quasi-periodic oscillations (kHz QPOs)
- 2. X-ray burst oscillations
- 3. "Bona fide" accretion-powered millisecond X-ray pulsars



## **"Bona Fide" Accretion-Powered Millisecond X-Ray Pulsars**



Chakrabarty & Morgan 1998

- Discovered with Rossi X-Ray Timing Explorer (RXTE) in 1998, 17 years after first msec radio pulsar.
- Persistent, coherent millisecond pulsations in non-burst emission. Doppler-modulated by binary motion.
- Long-term coherence of pulsations conclusively establishes link to rotation of neutron star.
- Confirms prediction that low-mass X-ray binaries contain rapidly rotating NSs with msec spins.
- 7 sources known, all are X-ray transients (~weeks duration) in highly compact binaries.
- Pulsed amplitude ~5%, well above non-detection limits in other LMXBs. Why not detected in (most) other systems?

### **Accretion-Powered Millisecond Pulsars**

| Year | Object            | $v_{spin}$ | P <sub>orb</sub> | Long. | Lat. |
|------|-------------------|------------|------------------|-------|------|
| 1998 | SAX J1808.4-3658  | 401 Hz     | 2.01 hr          | 355°  | -8°  |
| 2002 | XTE J1751-305     | 435 Hz     | 0.71 hr          | 359°  | -2°  |
| 2002 | XTE J0929-314     | 185 Hz     | 0.73 hr          | 260°  | +14° |
| 2003 | XTE J1807-294     | 191 Hz     | 0.68 hr          | 2°    | -4°  |
| 2003 | XTE J1814-338     | 314 Hz     | 4.27 hr          | 359°  | -8°  |
| 2004 | IGR J00291+5934   | 599 Hz     | 2.46 hr          | 120°  | 4°   |
| 2005 | HETE J1900.1-2455 | 377 Hz     | 1.39 hr          | 11°   | -13° |

•About half of the pulsars are in ultracompact binaries with nearly *identical* binary periods.

• All of these are low-luminosity transients with low mass-accretion rates. Why no persistent sources?

### **Nuclear-Powered Millisecond X-Ray Pulsars** (X-Ray Burst Oscillations)

SAX J1808.4-3658 (Chakrabarty et al. 2003)



quiescent emission due to accretion

- Amplitude evolution in burst rise interpreted as spreading hot spot on rotating NS surface. (Strohmayer et al.)
- Oscillations in burst tail not yet understood.
- "Superburst" oscillations in 4U 1636-53 (Strohmayer & Markwardt)

- Thermonuclear X-ray burst phenomenon known since 1970s.
- Burst oscillations discovered with RXTE (Strohmayer et al. 1996).

• Nearly coherent millisecond oscillations during thermonuclear X-ray bursts (270-619 Hz). More than 100 examples in over 10 sources, most also with kHz QPOs.

• Frequency drifts by several Hz over a few seconds, with asymptotic maximum at spin frequency. Frequency drift interpreted as angular momentum conservation in a decoupled burning layer on neutron star surface. (Strohmayer; Cumming & Bildsten)



### **Nuclear-Powered Millisecond Pulsars**

| EXO 0748-676         | 45 Hz  |  |
|----------------------|--------|--|
| 4U 1916-05           | 270 Hz |  |
| XTE J1814-338 (*)    | 314 Hz |  |
| 4U 1702-429          | 330 Hz |  |
| 4U 1728-34           | 363 Hz |  |
| SAX J1808.4-3658 (*) | 401 Hz |  |
| SAX J1748.9-2021     | 410 Hz |  |
| KS 1731-26           | 524 Hz |  |
| A1744-361            | 530 Hz |  |
| Aql X-1              | 549 Hz |  |
| X1658-298            | 567 Hz |  |
| 4U 1636-53           | 581 Hz |  |
| X1743-29             | 589 Hz |  |
| SAX J1750.8-2900     | 601 Hz |  |
| 4U 1608-52           | 619 Hz |  |

(\*) = also an accretion-powered pulsar

• 15 sources known. These systems include both persistent and transient LMXBs spanning a range of orbital periods and luminosities, showing that rapid spins are a common feature of NS/LMXBs.

• 2 of these are also accretion-powered pulsars, conclusively establishing that burst oscillations trace the NS spin. (Chakrabarty et al. 2003; Strohmayer et al. 2003).



## **Kilohertz quasi-periodic oscillations (kHz QPOs)**

- QPO pairs with roughly constant frequency separation (~300 Hz)
- QPO frequencies drift by hundreds of Hz as X-ray flux changes (200-1200 Hz)
- Particular separation frequency  $(\Delta v)$  is a characteristic of a given source
- Separation frequency  $\approx v_{spin}$  or  $\approx (v_{spin}/2)$  for cases where spin known (Fast vs Slow)
- Seen in over 20 LMXBs. Believed to originate in accretion disk. Mechanism?



#### What do we know about the spin frequency evolution?

For a pure accretion torque (no other torque contribution) near spin equilibrium,

$$\dot{\mathbf{W}} = 4 \times 10^{-12} \left( \frac{\dot{\mathbf{M}}}{\dot{\mathbf{M}}_{\text{Edd}}} \right) \left( \frac{\nu}{600 \text{ Hz}} \right)^{-1/3} \text{ Hz s}^{-1}$$

This corresponds to a decoherence time of

$$\tau = \frac{1}{\sqrt{\dot{N}}} \approx 6 \left(\frac{\dot{M}}{\dot{M}_{Edd}}\right)^{-1/2} \left(\frac{\nu}{600 \text{ Hz}}\right)^{-1/6} \text{ days}$$

This time scale is many months long for millisecond X-ray pulsars like SAX J1808.4-3658. Note that in the X-ray transients, there is only a significant torque during the (short) outbursts. The long-term average mass accretion rate is generally well below the Eddington rate in these systems.

#### What is known about orbital evolution?

In SAX J1808.4-3658, an orbital period derivative is measured:

$$\dot{P}_{orb} = 3.3 \times 10^{-12}$$
  
 $\frac{\dot{P}_{orb}}{P_{orb}} = 1.62 \times 10^{-8} \text{ yr}^{-1}$ 

### Summary

- <u>Issues of importance for gravitational wave community:</u>
  - The most luminous LMXBs do not have precisely known spins or orbits
  - Continuous X-ray timing of most LMXBs not possible
  - Long-term programmatic prospects for X-ray timing are uncertain
  - Spin evolution of millisecond X-ray pulsars appears to be modest

#### **References:**

- Chakrabarty et al. 2003, *Nature*, **424**, 42
  - Chakrabarty 2005, astro-ph/0408004