

Searching for gravitational waves with new interferometers

Michael Landry LIGO Hanford Observatory California Institute of Technology

on behalf of the LIGO Scientific Collaboration Continuous Waves Search Group http://www.ligo.org

NS/LSC meeting MIT Nov 2, 2006

Talk overview

- Everything up to analysis
 - » Gravitational waves what are they and what is the observable
 - » A look at LIGO and GEO interferometers
 - some installations
 - noise curves
 - » Observational ("Science") runs
- Analysis
 - » A one-slide introduction to the LIGO Scientific Collaboration (LSC) Continuous Waves (CW) search group and the work that they do
 - » M. Alessandra will overview the group's search efforts
 - » Ben will discuss astrophysical input

Gravitational waves

- GWs are "ripples in spacetime": rapidly moving masses generate fluctuations in spacetime curvature:
 - » They are expected to propagate at the speed of light
 - » They stretch and squeeze space

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

The two polarizations: the gravitational waveforms

What is the observable effect?

Amplitude parameterized by (tiny) dimensionless strain h:

$$h(t) = \frac{\delta L(t)}{L}$$

11100

What makes gravitational waves?

"bursts"

- Compact binary inspiral: *"chirps"*
 - » NS-NS waveforms are well described
 - » BH-BH need better waveforms
- Supernovae / GRBs:
 - » burst signals in coincidence with signals in electromagnetic radiation / neutrinos
 - » all-sky untriggered searches too
- Cosmological Signal: "stochastic background"
- Pulsars in our galaxy: *"continuous waves"*
 - » search for observed neutron stars
 - » all-sky search (computing challenge)

1110000

- Suspended Interferometers
 - » Suspended mirrors in "free-fall"
 - » Michelson IFO is "natural" GW detector
 - » Broad-band response
 (~50 Hz to few kHz)
 - » Waveform information (e.g., chirp reconstruction)

LIGO design length sensitivity: 10⁻¹⁸m

LIGO sites

LIGO (Washington) (4km and 2km)

LIGO (Louisiana) (4km)

Funded by the National Science Foundation; operated by Caltech and MIT; the research focus for more than 500 LIGO Scientific Collaboration members worldwide.

GEO600

Work with the GEO600 Experiment (Germany / UK / Spain):

- Arrange coincidence data runs when commissioning schedules permit
- GEO members are full members of the LIGO Scientific Collaboration
- Data exchange and strong collaboration in analysis now routine
- Major partners in proposed Advanced LIGO upgrade

600-meter Michelson Interferometer just outside Hannover, Germany

LIGO-G060546-00-Z

Aside: some terminology

Beam patterns

$$\frac{\delta L(t)}{L} = h(t) = F^+ h_+(t) + F^* h_{\times}(t)$$

• F^+, F^* : [-1, 1]
• F = F(t; \alpha, \delta)

Strain noise curves

Aside: some terminology

Beam patterns

Strain noise curves

What Limits Sensitivity of Interferometers?

- Seismic noise & vibration limit at low frequencies
- Atomic vibrations (Thermal Noise) inside components limit at mid frequencies
- Quantum nature of light (Shot Noise) limits at high frequencies
- Myriad details of the lasers, electronics, etc., can make problems above these levels

LIGO Evacuated Beam Tubes Provide Clear Path for Light

LIGO Evacuated Beam Tubes Provide Clear Path for Light

Bakeout facts:

- 4 loops to return current, 1" gauge
 1700 amps to reach temperature
 bake temp 140 degrees C for 30 days
 400 thermocouples to ensure even heating
- each site has 4.8km of weld seams
 full vent of vacuum: ~ 1GJ of energy

Vacuum required: <10⁻⁹ Torr

GEO, Virgo vacuum

Vacuum chambers provide quiet homes for mirrors

Standing at the 4k vertex: beam splitter

GEO, Virgo corner stations

LIGO Seismic Isolation – Springs and Masses

LIGO detector facilities

Seismic Isolation

- Multi-stage (mass & springs) optical table support gives 10⁶ suppression
- Pendulum suspension gives additional 1 / f² suppression above ~1 Hz

VIRGO Seismic Isolation and Suspensions

"Long Suspensions"inverted pendulum

• five intermediate filters

Payload -

All-Solid-State Nd:YAG Laser

Custom-built 10 W Nd:YAG Laser, joint development with Lightwave Electronics (now commercial product)

Cavity for defining beam geometry, joint development with Stanford

Frequency reference cavity (inside oven)

Core optics suspension and control

Shadow sensors & voice-coil actuators provide damping and control forces

Mirror is balanced on 30 micron diameter wire to 1/100th degree of arc

GEO Michelson length control

Reaction Pendulum:

- 3 coil-magnet actuators at intermediate mass, range ~ 100µm
- Electrostatic actuation on test mass bias 630V, range 0-900V= 3.5µm

GEO Thermal Noise / Monolithic Suspension

Calibrated output: GEO noise history

Time line

LIGO Hanford control room 31 Mar 2006 – S5

Coherent searches:

- Bayesian time-domain (TDS)
 - Isolated and binary pulsars²
 - Markov chain Monte Carlo
- F-statistic frequency domain
 - Isolated all-sky over wide frequency range
 - Einstein@home
 - Binary x-ray with some unknown orbital parameters
 - Directed for known x-ray sources

Incoherent searches:

- Hough transform
- Stack-slide
- Powerflux

estimation)

Deep searches over a broad parameter space

Fast, robust, wide-parameter searches

Employs JBO timing data (Kramer/Lyne)

parameter space (known pulsars, parameter

Finely tuned searches over a narrow

LSC CW publications

Summary of LIGO publications for periodic GWs:

